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A unified formalism is presented to study Hamiltonian linear systems driven by 
noise. With this formalism, the phase averaging approximation, valid at weak 
noise, is easily performed. Already known results are straightforwardly 
recovered and new ones are obtained. After introducing this formalism on the 
exactly solvable one-degree-of-freedom problem with uncorrelated noise, one 
studies the corresponding exponentially correlated case. The validity of the 
approximate results thus obtained is considered by investigating the systematic 
weak-disorder expansion beyond the quasilinear approximation. In particular, it 
is argued that this expansion behaves uniformly for weak and large correlation 
time. The two-degrees-of-freedom problem is completely solved at the low- 
disorder approximation and this result is applied to the two-channel Anderson 
localization problem. The invariant measure and the two positive Lyapunov 
exponents are computed at all coupling between the channels. For systems with 
n degree of freedom the phase averaging leads to a Fokker-Planck equation for 
the measure in action space describing the system. However, it is argued that it 
is not solvable except in a special case which is explicitly displayed and solved. 
Nevertheless, in the large-n limit, it is possible to compute the largest Lyapunov 
exponent. Moreover, generalized Lyapunov exponents are calculated in this 
limit, and they do not exhibit a dispersion: in particular, log(d~}/(log d~> ~ 1, 
where 6 ~ is the energy of the system and where the brackets denote averaging 
over the noise. On the other hand, it is possible to compute at weak noise the 
sum of all the positive Lyapunov exponents. Taking into account all these 
results allows more insight on the whole spectrum of Lyapunov exponents. 

KEY WORDS: Fokker-Planck equations; Lyapunov exponents; localization; 
parametric oscillators. 

1. I N T R O D U C T I O N  

Phys ica l  sys tems  d r i v e n  by  no i se  cons t i t u t e  a c o m m o n  field of  interest .  

M o r e  specifically,  one  can  cons ide r  a l inear  d y n a m i c a l  sys tem desc r ibed  by 
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a time-independent unperturbed Hamiltonian H o to which one adds a 
stochastic perturbation V(t). This perturbation may have time correlations. 
Such a model describes, for instance, a system of coupled harmonic 
oscillators driven parametrically by a noise. It describes also another 
problem of great interest, namely the Anderson localization in a system of 
mutually coupled continuous chains. (m~ In this last case, the spatial coor- 
dinate along the chains plays the role of time. 

The large-time behavior of this kind of system is characterized by the 
set of Lyapunov exponents. (2) In the case of coupled oscillators, the largest 
of these exponents determines the growth rate of the system's energy. For 
the localization problem, the smallest positive Lyapunov exponent is the 
inverse of the localization length, while the conductivity of a finite sample 
is related to the whole set of Lyapunov exponents. The properties of the 
Lyapunov spectrum have been recently studied by many authors, most of 
these works being numerical. (3'4) Exact results on this spectrum are rare 
and have been obtained in special cases (for example, see ref. 5). 

In the white noise case, the mathematical methods used to study such 
systems amount to writing a Fokker-Planck equation for a measure on 
relevant quantities such as the transfer matrix in the localization problem. 
Unfortunately, only the one-dimensional case is exactly solvable. (s) 
However, interesting results have been obtained in the weak noise limit, for 
example, by Dorokhov (1) and Dougot and Rammal. (6) 

All these methods ultimately lead to the determination of an invariant 
measure on a sphere in the phase space of the system by solving a second- 
order partial differential equation on this sphere. In a second step, this 
invariant measure allows one to compute the Lyapunov exponent. (8) 

The aim of this paper is to present these techniques in the weak 
noise limit, using a unified formalism. This allows one to recover 
straightforwardly some already known results but also to derive new ones. 
For weak noise, the usual approximation amounts to perform phase 
averaging. Thanks to the Hamiltonian form of the system under con- 
sideration, one works in action-angle variables. This leads, in a systematic 
way, to diffusion equations in the action variables, which are algebraically 
simple. These equations can be set in a form which is general and indepen- 
dent of the particular statistic of the noise (Gaussian or correlated). Using 
the terminology of plasma physics, we call this phase averaging method the 
quasilinear approximation. 

This paper is organized as follows. Section 2 is devoted to the one- 
dimensional case. The well-known exact result of Halperin(6! is recovered 
under the action-angle parametrization. Although this uncorrelated case is 
exactly solvable at all disorder, we present its quasilinear approximation in 
view of its pedagogical interest. 
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The one-dimensional correlated case is considered in Section 2.2. This 
problem is not exactly solvable. However, thanks to its structure, a pertur- 
bative treatment may be performed and this allows one to control the 
quasilinear approximation. Our conclusion is that for a given noise 
amplitude, the quasilinear approximation is uniform in the correlation 
time. 

In Section 3 the quasilinear method is derived for multidimensional 
systems. The quasilinear diffusion equation is written for a noise with a 
general structure. For linear systems, one obtains a homogeneous diffusion 
equation which provides, in principle, a way to compute the invariant 
measure to which the largest Lyapunov exponent is related, on a sphere in 
action space. 

For the sake of completeness, we recall in Section 3.3 the computation 
of the Kolmogorov entropy, a result which has been already published 
elsewhere. ~9) It is shown that the Kolmogorov entropy is simply related to 
the coefficients entering the quasilinear diffusion equation. 

All these results are then applied to the computation of the two 
positive Lyapunov exponents of the two-dimensional case, recovering and 
generalizing in a very simple way a result of Dorokhov. ~~ 

For n degrees of freedom (n > 2) it is argued in Section 4.1 that the 
problem in general is not solvable in general, even in the quasilinear limit, 
except in an isolated case which is solved in Section 4.2 within this limit. 
This special case presents interesting properties. Indeed, we find an absence 
of dispersion in the large-n limit, that is, for a physical quantity X (such as 
the energy of the system of oscillators) log(X~/( log  X)  ~ 1. 

Finally, we consider the thermodynamic limit where the number of 
degrees of freedom goes to infinity. In the cases where no restriction arises 
from the quasidegeneracy of the eigenfrequencies this limit still allows a 
quasilinear approach. It is shown that the absence of dispersion is then a 
general feature. It is indeed the situation in the localization problem, as 
previously presented in ref. 9. 

2. S Y S T E M S  WITH ONE DEGREE OF FREEDOM 

2.1. One Degree of Freedom w i t h  
Uncorrelated Gaussian Noise 

In this part we will introduce the formalism on the simple exampl e of 
a Hamiltonian system with one degree of freedom perturbed by a white 
noise potential. The aim of this part is essentially pedagogical. Well-known 
results in localization theory ~9) will be recovered easily. 
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Let us consider a random frequency oscillator whose Hamiltonian 
reads 

H(x, p, t) = �89 + �89 2 _ �89 (1) 

where E > 0 and 

(V(t)  V(t ')) -- 2 D 6 ( t -  t') (2) 

The actiomangle variables (/, ~b) of the system are given by 

E-1/4p = (21) I/2 sin ~b, E1/ax = (2I) 1/2 cos ~b (3) 

In these variables the equations of motion read 

I=2I~777sin~bcos~b, ()=-E 1/2 l + ~ c o s  ~b (4) 

Let us denote by P(I, O, t) the measure on its phase space. Then, the 
Lyapunov exponent A(D, E) is defined in term of P(I, O, t) by 

1 
lim, oo (? t f P( I, (~, t)log I dI d~ (5) A(D, E ) = ~  

It is easy to see that A(D, E) scales as 

A(D, E) = E 1/2A(D/E 3/2, 1 ) (6) 

So, in the following one sets E =  1 (except of course in the special case 
E =  0; see below). 

One looks for a partial differential equation satisfied by the measure 
P(I,O,t). For the more .genera l  stochastic equation Xi=f , . (X)+  
g~(X) V~(t) where V,(t) are independent white noises, the measure satisfies 
the Fokker-Planck equation: 

a,P + ai(LP) = ~. D~(ai g~)(aj g~)P 

(here the stochastic equation is interpreted in the Stratanovich sense). In 
particular, (4) leads to the Fokker-Planck equation 

c~tP + c~ r = D(2c2Ic3 ~P + 41:cZs2c~ P + 4Isc30~c~ r - 2c3sc~ i~P + c4c~ P) 

(7) 

with c = cos ~b and s = sin ~b. 
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This partial differential equation seems very hard to solve. However, if 
one is interested in the invariant measure #(06)=lim,_~ ~ ~ P(L 06, t)dI, 
one can integrate (7) by parts with respect to I and one finds the simpler 
equation 

63~t = D63~[cos 2 ~634,(C0S 2 ~].t) ] (8) 

This equation is easily solved. Its normalizable solution is 

#(06) = B(1 + u 2 ) du'exp[-(1/D)(u'+u'3/3)+(1/D)(u+u3/3)] (9) 

where u = tg 06 and B is given by the condition 

Integrating (7) by parts with respect to 06 leads to 

8 , f  = D f [4c2s2120 2 + I( - 4 c  4 q- 12s2c 2 + 2c 2) ~1 

-- 2(c 4 -- 3S2C2)] P(/, 06, t) d06 (10) 

where we have set f(I ,  t )=y~ P(I, 06, t)d06. Since log I is a homogeneous 
quantity of degree zero, the knowledge of/t(06) is sufficient to calculate the 
Lyapunov exponent. Indeed, multiplying (10) by log I and integrating by 
parts with respect t o / ,  one derives the following equality: 

1 )=1 /2  lim O,(logI>=D/2f2c2(-l+2c2)#(06)dqk (11) A(D, 

Equations (9) and (11) completely determine the Lyapunov exponent. 
These results, which are exact, were obtained in a rather different way by 
Halperin (6) for the localization problem. 

As a first example of the quasilinear approximation, let us show how it 
applies to this exactly solvable case. One way to introduce this method is 
to approximate the invariant measure by a constant: #(06)= 1/2~r. One can 
then easily compute the Lyapunov exponent by using (11). On this simple 
one=dimensional case, the quasilinear approximation is exactly in the same 
spirit as the random phase approximation used previously to study the 
localization problem on discrete lattices. (u) 

In order to generalize this idea to more complicated case (in Sec- 
tion 3), let us introduce the quasilinear method in a different way. One first 
considers the Liouville equation satisfied by the density in phase space: 

Gp(L r t) + [H, p]  = 0 (12) 
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Here the brackets denote the Poisson brackets: 

OHOp OHOp 
[H, p] = 

0I 00 00 0I 

The fact that the full measure in phase space is equal to (p } v, the mean of 
p with respect to the noise, is known as the Van Kampen lemma. (n) 

Let us write p = (P)o.v+P, where ~ is the fluctuating part of p and 
(P)~, v denotes the mean of P with respect to the angle and the noise. Using 
the explicit form of the Hamiltonian, and neglecting all terms of the form 
fiV(t), (12) splits into two equations: 

0t f -  8, {/(sin 2r V(t)~ }~, v] = 0 

Otfi + 8 ~  - / s i n  2r V(t) Or f =  0 

(13) 

(ly) 

Note that the first of these equations is exact. In this one-dimensional case 
with an uncorrelated noise, the quasilinear approximation consists essen- 
tially in the simple form of the second equation. Solving (13') for p in term 
o f f  and substituting in (13), one obtains 

8J=D/2 afl2a,f (14) 

One then simply calculates the Lyapunov exponent of the system by mul- 
tiplying (14) by log I and by integrating with respect to L 

Now some remarks are in order. 

1. The Lyapunov exponent in the quasilinear approximation is 
simply 

A ql(D, E ) -  ~ D 4 E 3/2 (16) 

. The solution of (14) is a log-normal distribution: 

1 I ( l~ 
P(I, r = (27rDt)l/2 exp ~ j (16) 

3. When applied to the localization problem, our formulation and 
Melnikov's (13) are slightly different. Indeed, we compute here the Lyapunov 
exponent (which is obviously the same as in Melnikov's work), but rather 
than considering the measure characterizing the transfer matrix, we are 
concerned here with the measure in action-angle variables. That is why 
(16) differs from Melnikov's result. 
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4. Expanding the exact formula (9) for weak disorder, one finds 

~,(~)--~ 1 - 2  E3/~ (1 

Therefore the quasilinear approximation holds for D ~ E 3/2. In particular, 
it fails completely for E = 0, that is, for. degenerate harmonic oscillators. 
This is a general feature of this approximation. It holds only when the 
angle variable of the unperturbated system can rotate rapidly. It is this 
rotation which makes the measure over the angles isotropic. 

One should also note that there is no correction at order D 2 t o  Aql. 
Indeed, the correction at order D in (17) is odd and does not contribute to 
the Lyapunov exponent. However, it contributes to the density of states. 

5. For E = 0, the quasilinear approximation is false. Even the scaling 
in D is incorrect. However, one can calculate exactly the leading term of 
A(D, 0) from (9) and (11). A careful computation of the limit D/E--+ oo of 
A leads to 

x~ ~ 1/3 1 D1/3 (18) A(D, 0 ) = - ~  (12) V(1/6) 

This result is the same as the one obtained by Derrida and Gardner ~14) for 
the Anderson localization at the band edge on the discrete one-dimensional 
lattice. This is not surprising, since at the band edge, the lattice dis- 
cretization must have no effect. 

2.2. One Degree of  Freedom w i t h  a 
Correlated Gaussian Noise 

In this part, the same system as in Section 2.1 is considered, but we 
suppose now that the perturbation is a stationary correlated noise with a 
correlation function (V ( t )V ( t ' ) )=  C( t - t ' ) .  We are mainly interested in 
implementing the quasilinear method in this case and in deriving then a 
systematic way for computing the low-disorder expansion of the Lyapunov 
exponent when the correlation is exponential. One of our motivations is to 
study the behavior of this expansion in the two limits of large and small 
correlation time ~, in  order to appreciate the validity of the quasilinear 
approximation. 

The equations of motion are the same as in Section 2.1 [(13), (13')]. 
One substitutes p from (13') in (13) and, taking into account that at weak 
noise, the variations o f f  are slow, one gets the following simple diffusion 
equation: 

c~,f= �89 c~,I 2 O,f  (19) 
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with 

= C(t) cos 2t dt (20) 

This result needs some comments: 

1. In the particular case where the noise is exponentially correlated, 
i.e., C(t)=~2e -Itl/z, one obtains from (19) and (20) 

1 ,~2~. 
A q l - 4  1 +4z 2 (21) 

One recovers that way the result of ref. 15. Note that the limit z ~ 0 must 
be taken keeping e2z constant: e2r = D. 

2. As said above, the evolution of f is supposed to be slow, i.e., 
A r 1/~. From (21) a sufficient condition for this is ~2 ,~ 1. This condition, 
which is uniform in r, will be discussed in more detail later. In physical 
units, this condition reads simply (V  2) ~ E. 

3. In the limit ~ ~ oe (i.e., slowly varying potential) it is possible to 
use a different method. (16) In this case one can eliminate the perturbation 
by performing successive canonical transformation, the number of which is 
fixed by the degree of differentiability of the perturbation. It is instructive 
to note that when applied to stationary processes, the simple result (21) 
indeed agrees with this adiabatic theory. In particular, if the correlation 
function is analytic everywhere, one gets from (19) and (21) a nonpertur- 
bative, at least exponentially small in l/r, Lyapunov exponent (we have in 
mind here a "deterministic" potential with the stationarity properties 
required to define a correlation function). 

In the case of a Gaussian exponentially correlated noise one may 
analyze more quantitatively-the validity of (21). In the following one con- 
structs the expansion of A in powers of e 2. In this case, the equations of 
motion are easily written in (/, ~b) variables. Indeed, it is sufficient to add 
to Eq. (3) an additional equation describing the evolution of y =  V(t) 
considered as an auxiliary variable. To obtain an exponential correlation 
function for y it is sufficient to filter a Gaussian white noise b(t). Therefore, 
we have 

i = 21y sin ~b cos ~b 

= 1 + y cos 2 ~b (22) 

?=  __y~ b(t) 
"E T 
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where b(t) is a Gaussian white noise with ( b ( t ) b ( t ' ) )= 2Df ( t - t ' ) .  The 
system is now described by a joint measure P(I, ~b, y, t). It satisfies a 
Fokker-Planck equation 

~,P +~,(lysin2~bP)+O~(l + ycos2 q S ) P - l ~ : , ( y P ) = ~ 2 y P  (23) 
T 

Equation (23) is rather involved. However, the invariant measure 
#(~b, y) = tim, ~ ~ ~ P(L y, (~, t) dI obeys the simpler exact equation 

c~(1 + y cos 2 ~b)tz - 1/'r ~,(yp) = D/r 2 8zyl~ (24) 

Multiplying (23) by 1/2log/ ,  one obtains after integrating with respect 
to ~b 

A = 1 /2 (y  sin 2q~) (25) 

Unfortunately, it does not seem possible to solve (24) exactly. 
However, (24) allows for a systematic perturbative scheme with 

respect to the strength of the disorder, to go beyond the quasilinear 
approximation. Indeed, if we set/~ = F(y, ~k) exp( - 1/4ry2/D), one finds 

O[F] = c~o(1 + y cos 2 ~b)F (26) 

where the operator O is defined to be 

D 822 y2 1 (27) 

Through the correspondence 

hZ/2m = D/z 2, 1/2moJ 2 = 1/4D 

and apart from an additive constant, - O  is the Hamiltonian of the 
harmonic oscillator. Therefore, the eigenvalues of O are o, = -n/z. The 
eigenvectors ~0,(y) are the same as for the harmonic oscillator. Thus, we 
expand F(y, ~b): 

r(y,  ~ ) = ~  a,(~b) ~ , (y )  (28) 

Substituting this expression in (24), one sees that the coefficients an are 
determined by the recurrence equations 

+ nl/2~3~(1 + cos 2~b) a ,_  2] = 0 (29) 
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with e = (D/v) m. To solve perturbatively this infinite set of equations, one 
writes a .  = ~ a(.~)e ~. Then one expands each a(. ~) in Fourier  series, 

a(~) = S' s(k/ ~(k) m~b (30) z.. .,m sin m~b + ~.,m cos 
rn 

Thus, one is led to solve an infinite linear system: 

n/rCk) _ mc(k) t -~  n , m  n , m  

(k- ~) = m e / 2 [ ( n +  1)1/2 ~.+t"(k- 1)1,m + ~/~c. + ~/ '~(k- 1) 1,,-- 2 + 1/2C~+1,m+2) 

(k- l) • 1/%.(k-1) 2+1/2C.  1,m+2)] " \ ~ n -  1 ,m  "37 x / ~ n -  1 ,m  --  

(31) 
n/zc(k,~ 4- ms ~1') 

- -  n , m  

= m e / 2 [ ( n + l ) l / 2 t ~ ( k - l )  3 -1 /~ (k -1 )  + 1 / 9 d k - 1 )  2) \ ~  ~ l , ~ O n + l , r n - - 2  * l ~ O n + l , m +  

..~_ ~ l / 2 d e ( k -  1) 3-  1 / " ) , , ( k -  1) ( k -  1) 
" t o n  1 , m - - X / ' r ' ~  1 , m  2+1/2S.-1,m+2)] 

It is easy to see that, as expected, d2k) is equal to zero for all k. The ~1,2 

quasilinear approximat ion for A is determined by s~}2 ) . The  first correction 
(of order  e 4) 6A (2) is obtained by calculating a]3,~ 2. Proceeding recursively, a 
straightforward but  tedious calculation gives 

( D ~  2,r3 48"c4+22~2+ 1 
6A(2) = \ z }  4('c 2 + 1)(4z 2 + 1) 3 (32) 

Using the formal calculation program MACSYMA,  we have been able to 
obtain the contr ibut ion of third order  to A: 

( D )  3 5r3QT(r2) 

~A(3)= 64(Z2 + 1) 2 (4z2+ 1) s (4z2 + 9)(1622 + 1) (33) 

QT(r 2) is a polynomial  of order  seven in  ~2: 

QT(-c 2) = 786,432214 + 1,516,032~ 12 + 688,832r 1~ 

- 74,544v 8 - 97,596-c 6 - 16,267r 4 - 1074v 2 - 27 

In order to have more  insight in the structure of the perturbat ive 
expansion of A, it is interesting to calculate at all orders in e the dominant  
contr ibut ion in the limit ~ ~ o0. One considers the expansion of #(~b, y)  in 
powers of l / r :  

/~(~b, y ) =  ~ /zk(~b, y) (34) 
k = 0  
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According to (24), #o(~, Y) (which does not contribute to A) is deter- 
mined by (here and in the following we rescale y as y --* W) 

~q~(l q- ~y COS 2 ~)~ = 0 (35) 

Therefore, Po(r Y) = h(y)/(1 + y cos 2 ~b), where h(y) is defined by 

ff " d~ 1 _y2/2 (36) 
1 +Wcos2 ff h ( y ) = ~ e  

namely 

l -y2/2(1 + gy)l/2 h(y) - (2g)3/2 e 

One gets #l(~b, y) by solving 

G(1 + ~y cos 2 ~) ~ = 1/r(,~ + GY)  ~o 

Inverting this equation and using (24), one may write 
order 1/z to the Lyapunov exponent as 

(37) 

the correction of 

aa l= l f+moo  i ;~= sin 2g~ y 
(2z~)37~ dy dq~ 1 + W cos2 

f~ &b' 2 X (~Y+~YY) e-y2/2(l + gy)l/2 
1 + ey cos 2 if' 

(38) 

Integrating by parts with respect to ~ and y, one obtains 

~A 1 -- T(2~) 3/21 f~': dfb f+oz_o~ dy s176 0{- yEA c~ Oe-y2/2 2 A 

(39) 

where A = 1 + ey cos 2 ~b. Now, a trick allows us to simplify this expression. 
Indeed, one notes that (39) can be rewritten as 

l f + ~  e-Y2/2 2~ e 2 2 \ 1 
5 A O ' - - - 7 ~  ~ ~ (2rc),/2dYfo dg)(l+ey)x/2(-eO~+~y20~)-~ (40) 

Integration over q~ can be explicitly performed, and after some 
manipulations one obtains the rather simple formula 

1(+~ gy e-y2~: 
6A1 = --83_~ dy 1 +ey (27r) m (41) 
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This result must be considered as formal. Indeed, due to the singularity of 
the integrand, the integral does not exist. However, (41) allows us to 
compute the asymptotic perturbative expansion in a of bAt: 

(}A1 I _ ~ U F ( ( 2 k + I ) / 2 )  2k 
= 8 k x /~  e (42) 

The singularity in (41) is a consequence of large fluctuations (lYl ~> l/e),. 
which are implicitly excluded in the definition of #o. This singularity must 
be canceled by a nonpertubative contribution to A. 

Taking into account all the results of this part, one can see that the 
perturbative expansion of A is an asymptotic series in e :, each term of 
which is bounded uniformly in r. Therefore one concludes that the con- 
dition ~ ~ 1 is indeed sufficient for all z for the quasilinear approximation 
to hold. 

3. GENERAL F O R M U L A T I O N  FOR n DEGREES OF F R E E D O M  

3.1. The Quasil inear Fokker-Planck Equation 

In the following, we formulate the quasilinear method for Hamiltonian 
systems with an arbitrary number of degrees of freedom driven by a 
correlated stationary Gaussian noise. As we will show, this method allows 
one to obtain a low-disorder equation for the distribution of the actions of 
the system (when it is linear). In some cases this will also provide a low- 
disorder invariant measure. Once the invariant measure is known, it is not 
difficult to obtain the quasilinear largest Lyapunov exponent of the system. 

Let us consider a system whose Hamiltonian reads 

H(t, 4) = Ho(1) + V(I, fb, t) 

I =  (/~), the actions ~b = (~),  the phases i =  1,..., n. The stochastic pertur- 
bation V(I, (~) may be expanded over its Fourier components: 

V(I, (~, t) = ~ V~(I) eim~ (43) 
m,o~ 

the b~(t) (c~ = 1,..., n) are n Gaussian noises with zero means and correlation 
functions 

(b~(t) b~(t') ) = 6~,pC~(t- t') (44) 

m = (mi), i =  1,..., is a n-integer-component vector. The Fourier transform 
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of C~(t) will be denoted C~(~o). The Liouville equation satisfied by the 
measure p(L qk, t) for a given realization of V is 

O,p(I, 4b, t )+  [H, p] = 0 (45) 

As in Section 2, one splits p into two parts: 

p(L ~b, t) = (p )~, v + p (46) 

and the exact equation satisfied by f ({I j  })= (p)r v is 

O f f -  i ~, ~Tsj(eimOv~,(I) mjb~(t)p) = 0 (47) 
j , m ,  c~ 

p is given by the approximate equation obtained by neglecting all terms of 
the form pb(t). One obtains 

Ot~+~f2jO~j~-i  ~ m;V~(I)e~m~b~(t)~sjf=O (48) 
j j , m ,  ct 

The solution of this equation is 

f2 ~ = i ~ e ira@ n,) mj V~(I) b~(t') c~.f(t') e ~met' dt' (49) 
m ,  j ,  o~ 

Substituting this expression in (47) and taking the limit t ~ oo, one obtains 
under the assumption of a slow temporal variation o f f  

2 a , # (50) 
I,J 

with 

Do= ~ mimjJV~[ 2 C~'(m, ~) (51) 
~ , m  

This equation determines the quasilinear approximation for the action dis- 
tribution in the limit t ~ ~ .  It holds for any Hamiltonian system provided: 
(1) it is nondegenerate, that is, all the 12i are all different and not equal to 
zero. Indeed, it is only under this assumption that the averaging over the 
phases is legitimate. In particular, the validity of this approach is 
questionable in the thermodynamic limit. This point will be considered 
further in Section 5.3. (2) The noise V is weak. Furthermore, it is assumed 
that the conclusion of Section 2.2 holds also in this more general case: it is 
reasonable to suppose that the validity of the quasilinear approximation is 
uniform in the correlation times as in the one-dimensional case. However, 
we have not proved this point. 
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3.2. Linear Hami l ton ian  Systems 

Now, we specialize to the more specific case of linear Hamiltonian 
systems, defined by quadratic Hamiltonians. In this case, the Hamiltonian 
written in action-angle variables is 

H = ~ ('2ii i + 2 (Iilj) 1/2 cos q~i cos Oj A)b~(t) (52) 
i i,j,c~ 

A is an n x n real matrix which depends on the system under consideration. 
In this case 

1 ~ IiA~; for mi = 0 for all i v; ( i )  =~  
i 

1 
V=m(1) = -~ IiA i] for mi = + 2, -- 2 and mj = 0 for i # j 

1 
V~m(I)=~(Iilj)~/2A} for m i = l , - 1 ,  m j = + l , - 1  

a n d m k = 0  for kr  

Therefore, according to (50), the diffusion matrix is defined by 

1 {I~ Aiil C~(2~i)+ ~ IfljLA~jt2[C~(g2~+f2j)+C~(f2,-f2j)]} (53) D,,= 5 L ~ 2 
i ~ j  

1 
D o. = -~ I, Ij LA•.I 2 [C=(Oi + f2j) - C=(f2,- a j ) ]  (54) 

For the sake of brevity we set in the following 

~ i=  1/4 IAal 2 C~(2&) 

flo = 1/4 I A,~-[ 2 [C=(D~ + f2j) + C~(f2i- sQj)] (55) 

7~= 1/4 IA~I 2 [C~((2,+ ~?j) - C=((2,- Qj)] 

where the summation over ~ is implicit. 
W i t h  these notations (50) is written 

c3tf = ( ~  o~ic~,tl2i c~,~+ flijc3,~liljc3,i+ ~ Tijc~,,Iiljc~,j) f (56) 

At large timef({I~}, t) does not have a limit. However, one can define the 
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projection # o f f  on an (n -1) - sphere  (more precisely, in a sector of this 
sphere where all the Ie are positive), 

#({I+}) = rn-~f({rI,})dr (57) 

with I i = Igr and r 2 =  ~ 12. From general theorems, (8) # is ensured to have 
a limiting value, namely the invariant measure. Now, the largest Lyapunov 
exponent is given by 

Ama x = 1/2 lira 0,( log I[II] ) (58) 
t ~ o ~  

where ][.JI may be any norm equivalent to the Euclidean norm. Note, in 
particular, that ~,( log Ii) is not the largest Lyapunov exponent. Obviously, 
the homogeneity of the integrands allows one to compute Area ~ once # is 
known. As will be seen later, Ama x is easily computable in the ther- 
modynamic limit in term of the matrix (02/~/i~+j) Do.. 

Let us show how to compute the quasilinear evolution of the whole set 
of momenta ( I i )  (i = 1,..., n). Using (50), one finds in the limit t ~ 0o and 
after integrating by parts 

( C )  = ~ \ ~3/j / (59) 

Therefore, the behavior of these moments at large t is completely deter- 
mined by the largest eigenvalue of the matrix A: 

Akk = 2~k + ~ Ykj (60) 
j ~ k  

Akj= Ajk= fl/k (61) 

So the largest eigenvalue of A is nothing else than the so-called 
"generalized Lyapunov exponent of order two," which we denote by A2: 

A2 l i r a  I = ~-~ log (IIIll) (62) 

Let us prove that the quasilinear diffusion equation provides a positive A2. 
The largest eigenvalue of A, 2 . . . .  is real and strictly positive. Indeed, A is 
symmetric. So all its eigenvalues are real. The largest eigenvalue of A is 
sup(]([A[ X)/ (X[X) .  Let X o be the vector with all its coordinates equal 
to 1. It is clear that AXo > 0. Therefore, ~max is positive. Now, it is possible 
to choose r/> 0 so that A = r/ l+ A > 0 and r/+ 2max is the largest eigenvalue 

822/54/3-4-27 
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of A. Hence, the Perron theorem asserts that its eigenspace is of dimension 
one and contains a vector with all its coordinates positive. Obviously this is 
also true for A. 

To conclude this section, let us stress that the other eigenvalues of A 
have no physical meaning, in particular, they can be all negative. 

3.3. Lowest Order for the Sum of the Positive 
Lyapunov Exponents 

The sum of the n positive Lyapunov exponents for a general 
Hamiltonian system with n degrees of freedom driven by a stationary 
correlated noise is easily computable at least in the weak-noise limit. This 
quantity is sometimes called the Kolmogorov entropy of the system and 
will be denoted by S. The method we use was presented elsewhere (9) for the 
case of an uncorrelated noise. For  the sake of completeness we sketch here 
the essential features of the method. 

The equations of motion are 

OH OH 
c?Qi = _ /5 ,  ~ = 0i  (63) 

Equivalently, we introduce the evolution operator U of the system. It 
satisfies 

U =  - H  0+ V U (64) 

It is easy to see that one can find a basis where the equation of motion 
of U is 

where we have set s'2 = H~/2, W =  0 - ~ / 2 V ( 2  t/2 

This basis can also be chosen so that H is diagonal. The first term of 
(65) may be eliminated by working in a rotating basis (with "frequency" 
f2). Writing in this basis the evolution operator 

where X ~ and Y', e = + 1 or - 1 ,  are n x n matrices, one obtains 

i i )~+= i W + _ X +  i W + + X  - (66) w-+x  -+5  w- x +, - 5  - 5  
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Here 

mee' ~ eiegJt Weie'~2t 

In order to compute the Kolmogorov entropy we argue that 

Z" = 1/2(0, log Det X+X - ) (67) 

Using the Wronski identity and Eq. (66), one obtains 

X =  -1 /2  R e ( / T r  W + + Z )  (68) 

with Z = X -  (X + ) - 
It is straightforward to see that Z satisfies 

i +Z+2ZW+_ i + i 2=-~W- +~ZW +Z+~W--  (69) 

The contribution of lowest order in D to X is easy to obtain. Formally 
integrating (69), one can write 

( T r  W + + Z )  

= / T r  W + + \ [ ';o ]) Z ( 0 ) + ~  (W +Z+W- +ZW + +ZW++Z)dt 

(70) 

To the lowest order only one term contributes, namely the term with 
no Z. All the other terms are at least of order D 2. Expressing W in term of 
the structure matrix A = and coming back to the notations of Section 3.2, 
one finds after some algebra 

1 X=-f .~. C~(s + O(D 2) (71) 
t , j , ~  

With the notations of (55) this reads 

1 1 1 

In particular, in the one-dimensional correlated case one recovers as, one 
should, the result of (21): 

D 1 
Xql = Aql = 4 1 + 4r 2 
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Note that if there is no correlation, the perturbative expansion of Z" can be 
performed at higher order systematically as explained in ref. 9. In the 
correlated case this is also possible, but the calculations are more involved. 
It is important to stress that (71) does not require any hypothesis on the 
level spacing. 

4. H A M I L T O N I A N  W I T H  A FINITE N U M B E R  OF 
DEGREES OF FREEDOM 

4.1. T w o  Degrees of  Freedom 

The two-channel localization problem was addressed previously by 
Dorokhov (~~ in the limit of vanishing coupling between the channels and 
low disorder. We show in the following that, in fact, it may be completely 
and easily solved at all coupling and low disorder, even in the correlated 
case, using the quasilinear approximation. 

Making the change of variable I ~ = r c o s  0 and I 2 = r s i n  0 with 
0 s  [0, ~/2], we consider the projection o f f ( r ,  0, t) on the unit sphere, 
namely ~(0, t) = ~ r f ( r ,  O, t) dt. The equation for # is easy to obtain from 
(56). Integrating by parts with respect to r, it is straightforward to obtain 

a~# = 00{2[(55 - ~) sc 3 - (52 - 7) $3C]# 

+ [(55 + ~2 - 27) s2c ~ + [3sc] a0# } (72) 

with J~12=J~21=J~, 712=721=7, s = s i n 0 ,  and c = c o s 0 .  The invariant 
measure is computed by setting the right-hand side of (72) to zero. Hence 

K 
#(0) (1 U2)~" ]~(1 "q'- b/2) + ((~1 + 0[2 -- 27)u 

er + (73) 

with 

f01 52 -- 51 
~b(u) = fi(1 + u 2) + (~1 + 52 - 27)u du 

where u = tg 0 and K is some normalization constant [note that ~b(u) is 
computable in a closed form]. In the following we will denote by h(u )  the 
function #(0)/(1 + u2). 

As said earlier, the knowledge of p(0) is sufficient for calculating the 
largest Lyapunov exponent of the system. Indeed, multiplying the equation 
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satisfied by f by log(I~ + I22) and integrating (by parts) with respect to l~ 
and 12, one obtains 

A=!{f 2 (1 h(u)+ U2) 2 [otl(lq_3u2)+o~2(3U2+U4) 

+ 7(1 -- u2) 2 + 2flu(1 + u2)] du~ (74) 
) 

(73), (74), and (71) solve completely the problem in the quasilinear 
approximation with arbitrary coupling between the channels except in the 
strictly degenerate case where the two frequencies are equal. 

Two limits are of some interest. 

1. Let us consider two oscillators coupled only through a noise (each 
of them being also perturbed by a noise). The relative excitation level of 
these oscillators can be characterized by the ratio ~(O)/#(n/2). For small 
coupling (fl ~ 0) and 7 = 0 (no correlation) one finds 

Nn/2) \ a ~ + a 2 /  

Another question of interest is the repulsion of the two positive 
Lyapunov exponents as one switches on the coupling between the two 
oscillators. One considers the nearly degenerate case ~ 1 ~ a 2 = ~  (the 
strictly degenerate case cannot be handle under the phase averaging 
approximation). Using (74) and (71), one finds for the two Lyapunov 
exponents 

Amax(fl) = ~  1 q 1og(2a/fl) I- O(fl) , 

Amm(fl)= 5 1 log(2a/fl)}-O(fl) 

(75) 

This result is valid only if ~1 - a2 ~ a/log(2a/fl). However, one can hope to 
find the same behavior in the exactly degenerate case. 

Hence, due to the effect of the coupling one gets a strong and non- 
analytic (in fl) repulsion of the two Lyapunov exponents. This property 
can be traced back to the more general behavior expected for the 
Lyapunov spectrum in disordered systemsJ ~7~ It is amazing that this 
repulsion is stronger than the repulsion of energy levels in systems with 
small coupling. 
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2. The two-channel Anderson localization problem corresponds to 
the following choice of coefficients: 

D D D 
~1 - 4(E_2)1/2 , ~2 = 4 ( E +  2)1/2 , fl=2(E2~2)l/4 (76) 

where E is the energy of the system and 2 is the coupling between the 
channels. In the limit where the energy is large with respect to the coupling, 
~1 ~' ~2 ~/~/2, the two positive Lyapunov exponents are 

Amax=~-~ 1 , Amin=3~-~ 1 -  (77) 

According to (71), one must have at low disorder Ama x + Ami n --- 2Ao(D , E), 
where Ao(D, E) is given by (15). This result is in agreement with formula 
(51) of Dorokhov (1~ (pu t /3=~  in Dorovkov's result). 

It is interesting to note that the measure does not vanish on the boun- 
dary 11=0, I 2 # 0  or / 2 = 0 ,  I 1 # 0 .  In particular, the quantity (Ii/I2) is 
infinite in the quasilinear approximation. 

4.2. Finite N u m b e r  of Degrees of Freedom 

In this section we make some comments on the general case with a 
finite number of degree of freedom. 

For n = 2 (Section 2.3) one is led to a one-dimensional equation for 
the invariant measure. For n > 2, the invariant measure at the quasilinear 
level is defined on an (n -1 ) - sphere  embedded in the Ii space (more 
precisely, in the sector with all the Ii positive). Even for n = 3 we did not 
succeed in obtaining # in the general case. In our opinion this is not 
fortuitous, as can be argued as follows. 

It is possible to deal with dynamical systems driven by white noise 
through a path integral approach. The problem is reduced to the 
evaluation of a partition function for an effective Hamiltonian. In the case 
of linear systems this Hamiltonian is quartic. For example, the 
Hamiltonian after a quasilinear phase averaging has the structure 

H({Ii}, {J i})= Z I, I j J ~  
i , j  

(Ji are the conjugate variables of the Ii). This Hamiltonian is integrable for 
n = 2  due to a simple scale invariance. For n > 2  it seems to be not 
integrable except for some isolated values of/~.(18) It is reasonable to think 
that the integrability of H is required for an analytical computation of the 
Lyapunov exponent to be possible. 
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However, in the particular case where there is no correlation and 
where/~u= ~ (=~)  for all i, j, Eq. (56) may be explicitly solved. One finds 

K [n~et+log~V]2/4~:t (78) f ( I i ,  t) = - -  e -  ,/7 
with Z = Z  I ,  and K is a normalization constant. The corresponding 
invariant measure is rather simple: 

The Lyapunov exponent is 

~: ( l /Z)  ~ 

1 
Ama~= ~ nc~ 

Restricted to this integrable case, one may calculate the various 
moments of the I~. An interesting quantity is the generalized Lyapunov of 
order p defined by 

A2p = lim ~, log{ZP}/2p 
t ~ o o  

One finds 

A2p = I + P  (79) 
Arnax n 

Hence, at the integrable point there is no dispersion for small p. In fact, as 
shown in the next part, this property holds in the more general cases in the 
large-n limit. 

5. LARGE-n L IMIT  

One considers in what follows the general n-degree-of-freedom 
problem. For the sake of simplicity the noise is supposed uncorrelated. As 
argued in the preceding part, this problem does not seem to be solvable. 
However, it is possible to obtain results in the large-n limit. 

Let us rewrite the equation satisfied by the measure in the more 
compact form 

O,f  = ~ aijO,,IiIjO, P (80) 

We set Z = ~ 2  2ili and X~= { Ik /Z};  the coefficients 2i are real, strictly 
positive, and such that Z 2~ = 1. They will be completely determined later. 
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As the 2~ are strictly positive, S is a norm of (I~). Thus 1/2 Ot log S is equal 
to the largest Lyapunov exponent, in the limit t ~ ~ .  Therefore, using 
(80), one has 

/iiij\  
2Amax = Z 2~aoXj + Z 2~a~Xi- ~ 2~ao \-~7 / (81) 

i , j  i i , j  

Now, S is of order x/-n, ag is of order 1, and X~ is of order 1/x/n. Assuming 
that for all i and j, (IiIj/S 2) are of the same order, they are necessarily of 
order 1In and the last term of (81) is of order 1 while the first is of order n. 
Thus, only the first term of (81) is dominant in the limit n -~ ~ .  To com- 
plete the specification of the coefficients )~ we choose the vector (2) to be 
an eigenvector of the matrix A = a u + 6gjaii with eigenvalue equal to the 
largest one. (This is indeed possible, as the Perron-Frobenius theorem 
asserts that the largest eigenvalue v of the strictly positive matrix aij is real 
and strictly positive, and that its eigenspace is of dimension 1 and is span- 
ned by a vector with all its components strictly positive. Moreover, as A is 
symmetric, any other strictly positive eigenvector is in this eigenspace.) 
Thus, we make the choice 

With this set of 2i one finds 

Area x = 1/2Iv + O(1/n)] (83) 

As shown in Section 3, the largest eigenvalue of A is A2. Therefore 

Jim Am x - ~ 2  = 1 (84) 

The naive ordering used in the discussion of (81) needs some sufficient 
coupling. In order to have more insight into this last point, let us prove it 
in a more rigorous way. The idea relies on the fact that Ap is an increasing 
and a convex function o f p  and on computing A2 and A 4. The A2 is given 
by (62) while A 4 is given by the eigenvalue problem 

AU~jl + Ajt~it + 230audit = 4A4 ~ij (85) 

where r is a symmetric tensor. Without the third term of the left-hand side 
of (85) one would get A2 = A 4 .  One can now compute perturbatively the 
effect of the third term of (85) o n  A 4.  One finds 

A4--A 2 ( 1 )  
A2 = ~ 2 4 + O  ~-5 (86) 

i 
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where 2i is given by (82). The coupling will be sufficient for the matrix A 
such that ~ 2~ is of order 1/n. Equation (86) is a generalization of (79) for 
p=2 .  Thus, the remarkable property (79) of the integrable case of 
Section 4.2 does not seem exceptional. One expects a behavior similar to 
(79) for all p. 

5.1. A Comment  on the Lyapunov Spectrum 

Taking into account the results of Sections 5.1 and 3.3, one can 
evaluate in the thermodynamic limit the ratio I =  n2max/Z , which we call 
the index of the Lyapunov spectrum: 

I =  2 N - -  (87) 
~i,j aij 

/ i s  obviously larger than two Iv(A)= sup(X JAr X)/(XI  X)  and the result 
follows from the special choice Xi= 1 for all i]. This result excludes the 
occurrence of a concave spectrum of Lyapunov exponents at weak noise. 
This is in agreement with previous numerical results. ~4) On the other hand, 
a rigorously linear spectrum can occur only if additional symmetry proper- 
ties of A are satisfiedJ 5) 

5.2. Appl icat ion to the n-Channel  Localization Problem 

For the sake of completeness, we recall here the main results we 
obtained in a previous work (9) for the n-channel localization problem in the 
large-n limit. More details can be found in ref. 9. In that paper, the exact 
equation satisfied by the invariant measure was used to show that in the 
large-n limit and at weak noise, the largest Lyapunov exponent and the 
generalized Lyapunov exponent A2 were equal. This result can be 
recovered by using the quasilinear method. However, the validity of this 
approach is questionable in the limit n --* oo. It was argued that this result 
holds up to correction of order D/LtE, where AE is the width of the energy 
spectrum of the unperturbed system. It is important to note that the much 
more stronger condition D/6E, where 6E is the mean spacing between 
energy levels (6E~ AE/n), is not required. This ensures that the quasilinear 
result of the absence of dispersion is indeed valid in the large-n limit. 

The sense of the quasilinear method in the thermodynamic limit is not 
obvious. Indeed, in this limit the energy level spacing vanishes and for 
a general system this would impose taking D--.0. However, one can 
convince oneself that if the system possesses some particular properties, the 
quasilinear theory subsists for D >> 6E. An example of a physical system 
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which has such good properties is the n-channel random Schr6dinger 
equation. The proof given for this case in ref. 9 suggests that the sufficiency 
of the two following properties may be conjectured: 

1. An invariance property of the Hamiltonian and of the noise 
structure (in the Schr6dinger case: the invariance by translation). 

2. The fact that the random perturbation is a sum of n projectors [in 
(49), A ~ is the matrix of a projector]. 

A result similar to (87) has been obtained in ref. 9: the index of the 
spectrum defined by I =  nAm,x/Z is given in term of the (transverse) density 
of states of the unperturbed system p(e) by the formula 

. W 
It follows that for weak disorder I is always greater than 2. At high energy 
compared to the transverse coupling, I =  2, but at low energy one has in 
general I r  2. This analytical result supports the idea previously suggested 
on the basis of numerical simulations (4) that the Lyapunov spectrum in the 
thermodynamic limit is always convex at small noise (a localization being 
related to a threshold for the concavity to occur). In the case of the one- 
dimensional Anderson localization, Area x -- 1/2A2. It is important to stress 
that it is precisely the absence of dispersion in the large-n limit which 
makes I =  2 at high energy. 

6. C O N C L U S I O N  

The aim of this work was to discuss, on some examples, the use of dif- 
fusion equations in the study of Hamiltonian systems driven by noise. As 
far as one is concerned with the "direct" problem of parametric oscillators 
and thus interested in the largest Lyapunov exponent in the usually studied 
(and in general physically relevant) limit of weak noise, these methods 
appear to be rather powerful. In one dimension, the white noise problem is 
exactly solvable, while in the correlated noise case, these techniques 
provide an asymptotic expansion rather well behaved and sufficient for 
practical use. In dimension n greater than one, the evaluation of the largest 
Lyapunov exponent is also possible either through a calculation of an exact 
(small-noise) invariant measure (as in the two-dimensional case or in some 
exceptional case for n >  2) or by a large-n estimation. For n = 0% the 
difficulty which arises from the degeneracy can be overcome by a very 
similar method (9) which does not require a nondegeneracy hypothesis. 
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For  the localization problem, in which all the Lyapunov  exponents are 
relevant, the method of this paper  can only give more insight into the 
convexity of the Lyapunov  spectrum, but it does not  solve the problem 
completely (except for two coupled channels). Though  D o r o k h o v  ~1'~~ 
applied similar methods for the whole transfer matrix, his analysis is 
restricted to small coupling. 

We have emphasized in this work the quasilinear formalism because 
the diffusion equations obtained in this f ramework are algebraically simple 
and nevertheless they contain striking features of the problem: non-  
solvability except in particular cases, remarkable properties in the 
thermodynamical  limit. 
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